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Abstract—The super hydrophobic textile materials have a wide 
range of applications in the field of protective textiles. The defense 
sector has a tremendous need of such materials for the development 
of next generation protective clothing such as CBRN protective Suit, 
Glacier Clothing; Jacket Wind Cheaters, Trousers Wind Cheater, 
Gloves, Cap, Poncho and various allied items like Rucksack, Bag 
Carrying Rescue, Gaiters, Tents and shelters. Looking at the urgent 
need of such materials, this research initiative is taken to fulfill the 
demands.  
 
This paper work reports on the development of superhydrophobic 
textile materials. The inherently flame retardant polyester and cotton 
fabric is considered here as the substrate material for development of 
superhydrophobic surface.  
 
The substrate material is initially treated with silica nanosol for 
enhancement of surface roughness and subsequently, treated with 
hydrophobic chemicals like poly (dimethylsiloxane) (PDMS), for 
development of Superhydrophobicity. The Superhydrophobicity of the 
material is evaluated in terms of static water contact angle and water 
repellency test. The higher contact angle represents better 
hydrophobicity and a contact angle approaching to 1500 or above 
achieved with any material designates it as superhydrophobic 
material. Higher rating of water repellency indicates better 
hydrophobicity. The concentration of PDMS is varied from 2% to 
8%, on textiles substrate pretreated with nanosols for assessing the 
influence of the chemical on contact angle and water repellency. The 
SEM images of the treated samples are captured and scrutinized for 
evenness of the coating process.  
 
The coating of any material on textile substrate affects its various 
physical and functional properties like tear strength, bending rigidity, 
air permeability and flame retardency. As in this research work, the 
coating of titania, Silica and their hybrid nano sol and followed by 
chemical treatment with PDMS are carried out in order to achieve 
the superhydrophobic surface, hence evaluation of the above 
mentioned properties is carried out and compared with Static WCA 
of the developed substrate to assess the variations due to coating. The 
optimum Superhydrophobicity is decided by the maximum value of 
water contact angle and highest water repellency rating with 
insignificant influence on the physical and functional properties of 
the substrate material. 

Keywords: Superhydrophobic surfaces, lotus effect, 
superhydrophobicity, silica sol, cotton and polyester fabrics, Trevira 
CS. 

1. INTRODUCTION 

The superhydrophobicity (hydrophobicity) of solid surfaces 
has been investigated with considerable attention over the past 
few years and remarkable progress has been achieved. [1–2]. In 
nature, many surfaces like the wings of butterflies and the 
leaves of plants such as cabbage are highly hydrophobic and 
self-cleaning. The most popular example of a super 
hydrophobic self-cleaning surface is the leaves of the lotus 
plant, which is botanically recognized as Nelumbo Nucifera 
(Gulrajani, 2006; Taurino et al., 2008).[3,4] The leaves of this 
plant always remain clean because water droplets easily roll 
off of the ultra hydrophobic leaf surface, collecting and 
removing the dirt and contaminations. Therefore, the effect of 
self-cleaning by flowing water droplets is called “Lotus 
effect”. The main reason for the superhydrophobicity of the 
leaves is its surface roughness and low surface energy (contain 
20-40µm protruding nubs covered with a smaller scale rough 
surface of epicuticullar wax crystalloids). Generally most 
surfaces, has the hydrophilic surface, with water contact angle 
of below 90°. A slightly hydrophobic solid surface can be 
achieved with a water contact angle (CA) of above 90°. It 
becomes super hydrophobic after roughening, and CA reaches 
above 150° (Nosonovsky et al., 2009). The effect of 
roughness-induced superhydrophobicity was theoretically 
predicted and experimentally observed in the 1930s,[5] but 
superhydrophobic surfaces were found long later. It has been 
discovered that water droplets on hydrophobic surfaces can 
exhibit a contact angle higher than 90°, and some can even be 
approaching approximately up to 180° [6–8]. In particular, the 
contact angles related to superhydrophobic (or 
ultrahydrophobic) surfaces are greater than 150°. And those 
superhydrophobic surfaces are very likely to have phenomenal 
roughness with micro- or nanosized (or even smaller) 
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protrusions coming out of the surface [9,10]. Self-cleaning can 
be achieved in many superhydrophobic surfaces by removing 
dust, dirt and contaminates particles with water drops moving 
over the surfaces. An increasing number of publications on 
superhydrophobicity have appeared since last two decades, 
when micropatterning technology matured, and it became 
possible to build superhydrophobic surfaces with desired 
properties (Nosonovsky et al., 2009).[5] Therefore, the liquid 
might contact only a few bits of the superhydrophobic surface 
without fully wetting it. Indeed, fluid interacting with 
superhydrophobic surfaces is one important discipline of 
research in the 21st century, and can essentially influence a lot 
of cutting-edge topics in engineering and biotech research 
which involve surface structures, fluid motivation, and their 
physical and chemical properties. Basically, the contact angle 
related wetting phenomena are of great interest and 
importance to current research progress. A considerable 
amount of work has been carried out to study the involved 
mechanisms and principles [11–34]. 

2. RESEARCH METHODOLOGY 

A literature review is firstly used to find the comments from 
the past articles, journals and textbooks which mentioned 
about the water repellent and nanotechnology applied for 
repellent finished. So background of knowledge and recent 
development can be studied. 

Sol gel method and pad-dry-cure are used to apply the 
repellent composite on inherently flame retardant polyester 
fabric and cotton fabrics. Combinations of various types of 
nanoparticle solutions, curing temperature and concentration 
will be varied and then performance of treated fabrics will be 
evaluated, in order to find out the optimum condition and 
materials for application of the water repellent finish. 

Also, national and international standards such as IS and BS 
testing methods have to be applied, to evaluate the 
performance of specimens. Moreover, analytical instruments 
and characterization techniques like contact angle 
measurement and scanning electron microscope can be used in 
evaluation of the surface morphology and surface tension of 
the repellent treated specimens. 

3. EXPERIMENTAL PROCEDURE 

3.1. Materials 

Trevira CS inherently flame retardant polyester fabric 
developed by Hoechst AG, Germany was used for the study. 
This inherently flame retardant polyester fabric is promoted 
and marketed by Reliance Industries in India. Finished Cotton 
fabric was purchased from Shri Ganesh mills in Panipat 
(Haryana). Tetraethylorthosilicate (TEOS), stearic acid, 
toluene, acetone, ammonia, polydimethylsiloxane(PDMS) 
were purchased from Aldrich. 

 

Table 3.1: Specification of raw material 

Fabric Specification Polyester (Inherent 
FR) 

Cotton 

GSM 106.55 123 
 
Density 

EPI 92 103 
PPI 95 74 

Weave Plain Weave Plain Weave 

3.2 Synthesis of Silica nanosol for treatment of finished 
cotton/polyester fabric:  

A 100 ml solution of ethanol was stirred for 2-3 minutes, then 
5ml ammonia solution was added drop wise and stirring of 
solution was continued for 30 minutes. Heat and speed of the 
stirrer is gradually increased and temperature of the stirrer is 
maintained at 60 o C. After 30 minutes of stirring 6 ml, 11.18 
ml, 16.8 ml, 25ml, 30ml, 35ml TEOS was added drop wise 
into the solution in 3 different flasks and stirring was 
continued for 90 minutes at 60 o C temp. The silica nano sol 
solution is then left for 12 hrs (overnight). 

3.3 Application onto the fabric: 

Sol of the silica nano-particles was applied on to the finished 
cotton/polyestereqqw2w22q fabric through padding mangle 
(pressure applied 2.75 kg). The fabrics were then dried at 
room temperature for 5 min and cured at 80o C for 3 min in an 
oven. 

 
Figure 3.3: Covalent binding of the precursor silanol group to the 

hydroxyl group of the textile fibre in the reaction of 
condensation. 

3.4 Preparation of Super hydrophobic surface on to SiO2 

nano sol on Trevira CS PET and finished cotton fabric: 

A solution of toluene was stirred for 2-3 minutes. There after 
PDMS chemical solution was added to the solution, there after 
acetic acid was added to the solution to adjust PH at 5 (acidic 
medium) and stirring of solution was continued for 10 
minutes. This whole process was done at room temperature. 

3.5 Application of PDMS solution onto silica nanosol 
treated sample:  

The sample were dipped in solution for 10minute at room 
temperature and passed through the automatic padding 
magnate machine. At the same nip pressure of 2.75 kg per 
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(a) SEM images of polyester scoured fabric surface 

 

 (b.) polyester silica nanosol treated fabric surface 

 
(c) SEM images of silica nanosol and PDMS treated Polyester 

fabric. 

  

(a.) SEM images of Cotton scoured fabric surface 

 

(b.) cotton sio2, nanosol treated fabric surface 

 

(c) SEM images of sio2and PDMS treated Cotton fabric 
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